Cancer-associated thrombosis

17th November 2016 Simon Noble Clinical Professor Palliative Medicine Cardiff University Wales, UK

Today

- What is VTE?
- How does CAT differ?
- Initial anticoagulation
- Anticoagulation at 6 months
- New oral agents and cancer
- Patient involvement in decision making

Deep Vein Thrombosis (DVT)

© 2003 Society of Interventional Radiology

Saddle PE

Saddle PE

Multiple PE

Isolated segmental

PE responsible for 10% of deaths in

Mmmm...A
sudden massive
PE is a nice way
to go!

Post mortem study

- 92 patients where PE identified as cause of death
- 27 (30%) died within 10 minutes of symptoms
- 9 (10%) had no symptoms

60% of patients: "gradual deterioration dominated by dyspnoea, tachycardia and fever"

- Correct diagnosis of PE in 10% of cases
- Approximately 2 hours to die
- Treated with diuretics, digoxin, antibiotics

VTE in cancer

- VTE is commonest cause of death in cancer patients undergoing chemotherapy
- VTE is considered to the second leading cause of death in cancer patients
- VTE occurs in ≥ 20% of cancer patient through their lifetime
- VTE may be present in as much as 50% of patients at the time of autopsy series.

Lyman et al JCO 2009; Khorana et al J. Thromb. Hemost. 2007; Lyman et al JCO 2007

The coagulation pathway

The coagulation pathway

Lung cancer

Non-cancer

Virchow's triad

Endothelial injury

Hypercoagulable state

Effect of Malignancy on Risk of Venous Thromboembolism (VTE)

Treatment impact on VTE Incidence In Various Tumors

Oncology Setting	VTE Incidence
Breast cancer (Stage I & II) w/o further treatment	0.2%
Advanced cancer (1-year survival=12%)	9%
High-grade glioma	26%
Multiple myeloma	3-5%
Renal cell carcinoma	43%
Solid tumors (anti-VEGF + chemo)	47%

Otten, et al. Haemostasis 2000;30:72. Lee & Levine. Circulation 2003;107:117

Treatment impact on VTE Incidence In Various Tumors

Oncology Setting	VTE Incidence
Breast cancer (Stage I & II) w/o further treatment	0.2%
Breast cancer (Stage I & II) w/ chemo	2%
Breast cancer (Stage IV) w/ chemo	8%
Advanced cancer (1-year survival=12%)	9%
High-grade glioma	26%
Multiple myeloma	3-5%
Renal cell carcinoma	43%
Solid tumors (anti-VEGF + chemo)	47%

Otten, et al. Haemostasis 2000;30:72. Lee & Levine. Circulation 2003;107:117

Treatment impact on VTE Incidence In Various Tumors

Oncology Setting	VTE Incidence
Breast cancer (Stage I & II) w/o further treatment	0.2%
Breast cancer (Stage I & II) w/ chemo	2%
Breast cancer (Stage IV) w/ chemo	8%
Advanced cancer (1-year survival=12%)	9%
High-grade glioma	26%
Multiple myeloma	3.5%
Multiple myeloma (thalidomide + chemo)	28%
Renal cell carcinoma	43%
Solid tumors (anti-VEGF + chemo)	47%

Otten, et al. Haemostasis 2000;30:72. Lee & Levine. Circulation 2003;107:117

Warfarin

- High rate of bleeding in palliative care setting¹
- Difficulty controlling INR¹
- Multiple drug-drug interactions with commonly used symptom control drugs²
- Impaired quality of life³

- 1. Johnson. Palliative Medicine 1997
- 2. Noble. Palliative Medicine 2004
- 3. Noble and Finlay. Palliative Medicine 2004

The CLOT Trial Primary outcome: VTE recurrence

HR = hazard ratio; NNT = number needed to treat; VKA = vitamin K antagonist; VTE = venous thromboembolism

LMWH vs warfarin meta analysis

Guideline recommendations

Guideline recommendations:

Standard of treatment for cancer-associated thrombosis is three to six months LMWH

(Grade A)

In patients with ongoing active cancer, consideration should be given to indefinite anticoagulation but decision should be made on a case by case basis, taking into consideration bleeding risk and patient preference.

(Grade D)

DVT = deep vein thrombosis; LMWH = low molecular weight heparin; PE = pulmonary embolism; VKA = vitamin K antagonist

What the evidence covers

- Metastatic disease
- Performance status 0-2
- Estimated prognosis > 3 months
- Platelet count >75,000 mm³
- Weight > 40kg
- No active bleeding

Range of disease

- CLOT:
 - 65% metastatic
- Meyer:
 - 40% not receiving active treatment
 - 50% metastases
- LITE
 - 47% metastatic disease

Data in palliative care population

- 2 case series describe use of LMWH for treatment of VTE in advanced cancer patients
- One qualitative study suggests LMWH to be acceptable to palliative care patients ³
- LMWH now drug of choice for cancer associated VTE in palliative care ⁴
- LMWH does not accumulate over time 5
 - 1. Noble SIR, Hood K, Finlay IG. Palliative Medicine 2007
 - 2. Soto-Cárdenas MJ et al . Palliative Medicine 2008
 - 3. Noble SIR, Finlay IG. Palliative Medicine 2005
 - 4. Noble et al Lancet Oncology 2008
 - 5. Kovacs et al T&H 2005

Is LMWH still acceptable?

- Original paper 2005
- Selection bias?
 - LMWH not custom and practice
 - Most interviewed on LMWH due to warfarin failure
- Representative timeframe?
 - o On LMWH for a month
 - o Same after 6 months?

Study repeated using same methods

o LMWH for at least 3 months

Major themes

- Symptoms/ experience of VTE "worse than cancer"
 - Impact on cancer journey
 - Impact on ADLs
- LMWH acceptable within context of illness
 - Necessary inconvenience
 - o Fear of recurrence
- Adaptive behaviours and routine

Seaman Pat Pref Adh (2014)

What evidence is there to guide management beyond 6 months?

Effect of Malignancy on Risk of Venous Thromboembolism (VTE)

DALTECAN

- Prospective observational safety study of dalteparin at 6 and 12 months anticoagulation for CAT
- 334 patients enrolled,
 - 55.4% (155) completed 6 months of therapy
 - 33% (109) completed 12 months.

DALTECAN Efficacy and safety of long-term therapy

Major bleeding rate per month

Total VTE recurrence rate

- 116 deaths
- 105 due to cancer
- 4 due to recurrent PE
- 2 due to hemorrhage

PE = pulmonary embolism; VTE = venous thromboembolism

DALTECAN Efficacy and safety of long-term therapy

Bleeding was not increased in Months 6–12 compared to Months 2–6.

VTE = venous thromboembolism

What data can guide us?

- CLOT subgroup analysis
- Independent risk factors of VTE recurrence:
 - o Lung cancer (HR, 3.51; 95% CI, 1.62–7.62)
 - o Metastases (HR, 2.59; 95% CI, 1.29–5.60)
- Lower risk
 - o Breast cancer (HR, 0.59; 95% CI, 1.62-7.62)

CI = confidence interval; HR = hazard ratio; VTE = venous thromboembolism

Risk Model for Recurrent VTE in CAT The Ottawa score

Variable	Regression Coefficient	Point
Female	0.59	1
Lung cancer	0.94	1
Breast cancer	-0.76	-1
TNM Stage I	-1.74	-2
Previous VTE	0.4	1
Clinical probability: Low (≤0) Clinical probability: High (≥1)		-3 - 0 1 - 3

Outcome:

Patients with a score <0 had a low risk of recurrence: 5.1%

Patients with a score of 0 had an intermediate risk of recurrence: 9.8%

Patients with a score ≥1 had a high risk of recurrence: 15.8%

Results have not been fully validated

Recurrent VTE Risk in Active Cancer Population-based cohort Olmstead County

477 patients with active cancer and VTE (eligible between 1966 and 2000)

Cumulative Incidence of First VTE Recurrence

Multivariate Predictors of VTE Recurrence

Characteristic	HR	95% CI	<i>P</i> - value
Stage IV pancreatic cancer	6.38	2.69, 15.13	<0.0001
Brain cancer	4.57	2.07, 10.09	0.0002
Myeloproliferative or myelodysplastic disorder	3.49	1.59, 7.68	0.002
Ovarian cancer	3.22	1.57, 6.59	0.001
Stage IV cancer (non pancreas)	2.85	1.74, 4.67	<0.0001
Lung cancer	2.73	1.63, 4.55	0.0001
Neurological disease with leg paresis	2.38	1.14, 4.97	0.02
Cancer stage progression	2.14	1.30, 3.52	0.003
Warfarin therapy	0.43	0.28, 0.66	<0.0001

Factors influencing decision whether to extend anticoagulation in CAT

Factor	Favors continuing anticoagulation	Favors stopping anticoagulation
Patient preference	• 1º concern recurrence	• 1 ^o concern hemorrhage
Malignancy specific	Active malignancyHigh risk cancer e.g., lungOngoing chemo or ESA	No evidence of diseaseLow risk cancer e.g., breast
Previous history of VTE	• Yes	• No
Nature of initial VTE	Life-threatening PEDVT with severe postphlebitic syndrome	Non life-threatening PENo residual symptoms
Risk of hemorrhage	• No	• Yes
Additional risk factors	ObesitySexPoor performance statusCentral venous catheter	 Risk factors other than malignancy when diagnosed e.g., surgery

¹º = primary; CAT = cancer-associated thrombosis; DVT = deep vein thrombosis; ESA = erythropoiesis stimulating agent; PE = pulmonary embolism

Can we use DOACs yet?

DOAC Pharmacology

Oral direct Ila and Xa inhibitors

	dabigatran	rivaroxaban	apixaban
Target	lla	Xa	Xa
t½	12-17 h	9 h	12 h
Dose / frequency	150mg bd 110mg bd	20mg od	5mg bd
Renal clearance	85%	33%	27%
Peak	2 h	2-4 h	2-4 h

DOACs in the treatment of CAT

Recurrent VTE

A	NO	AC	VK	Ά		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% CI	
Re-Cover I and II	10	173	12	162	48.4%	0.78 [0.35, 1.76]	2009		
Einstein-DVT	4	118	5	89	19.3%	0.60 [0.17, 2.18]	2010	-	
Einstein-PE	2	114	3	109	10.2%	0.64 [0.11, 3.74]	2012		
Hokusai	4	109	7	99	22.2%	0.52 [0.16, 1.72]	2013		
Total (95% CI)		514		459	100.0%	0.66 [0.38, 1.17]		•	
Total events	20		27						
Heterogeneity: Tau ² = 0	0.00; Chi ²	= 0.34,	df = 3 (P	= 0.95); $I^2 = 0\%$		—		-
Test for overall effect: 2	Z = 1.42 (F	0.16	3)				0.01	0.1 1 10	100
	`						Fav	vours NOAC Favours VK	Α

Pooled incidence rates: 4.1% (2.6–6.0) for DOACs

6.1% (4.1–8.5) for VKAs [RR 0.66 (0.38–1.2)]

Recurrent VTE warfarin Lee A et al. 2003: 16% Meyer G et al. 2002 17%

Major bleeding or CR-NMB

В	NO	AC	VK	ίA		Risk Ratio		Risk R	atio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Rando	m, 95% Cl	
Re-Cover I and II Einstein-DVT	23 17	159 118	20 14	152 88	29.5% 21.5%	1.10 [0.63, 1.92] 0.91 [0.47, 1.74]	2009 2010	_	-	
Einstein-PE	14	114	10	108	15.5%	1.33 [0.62, 2.86]	2012	+	_	
Hokusai	20	109	25	99	33.6%	0.73 [0.43, 1.22]	2013	-		
Total (95% CI)		500		447	100.0%	0.94 [0.70, 1.28]		•		
Total events	74		69					1		
Heterogeneity: Tau ² =	0.00; Chi2	= 2.03,	df = 3 (P	= 0.57); I ² = 0%		-		_	
Test for overall effect:	Z = 0.37 (F	0.71)				0.01	0.1 1	10	100
	`		,				Fa	vours NOAC	Favours VI	<a< td=""></a<>

Drug-Drug Interactions with DOACs Chemotherapeutic agents and immunosuppressants

	Dabigatran	Rivaroxaban	Apixaban
Interaction effect*	P-glycoprotein	P-glycoprotein CYP3A4	P-glycoprotein CYP3A4
	Cyclosporine	Cyclosporine	Cyclosporine
	Tacrolimus	Tacrolimus	Tacrolimus
Increases	Tamoxifen	Tamoxifen	Tamoxifen
DOAC plasma levels†	Lapatinib	Lapatinib	Lapatinib
	Nilotinib	Nilotinib	Nilotinib
	Sunitinib	Sunitinib	Sunitinib
		Imatinib	Imatinib
Reduces	Dexamethasone	Dexamethasone	Dexamethasone
DOAC plasma	Doxorubicin	Doxorubicin	Doxorubicin
levels [‡]	Vinblastine	Vinblastine	Vinblastine

^{*}Clinicians should consult pharmacist; †Drugs that inhibit P-GP or CYP3A4 can increase DOAC levels; ‡Drugs that induce P-GP or CYP3A4 can lower DOAC levels.

CYP3A4 = cytochrome P450 3A4; DOAC = direct oral anticoagulant

Around one third of patients are currently treated with oral medication for their VTE

Administration of medication (%)

^{*} Significant difference to Germany

Interference with cancer treatment is the most important attribute to patients, followed by efficacy of VTE therapy

Relative importance of attributes* - Total

When asked directly, patients allocate almost the same importance to efficacy and interference with cancer treatment

Direct importance of characteristics for treatment decision (means)

^{*} Significant difference to UK / Germany

What may the future hold for choosing anticoagulation for cancer-associated thrombosis?

- Current guidelines recommend LMWH for the treatment of patients with cancer and VTE.
- There are four active phase III trials of direct Xa inhibitors vs. LMWH that should be completed in the next 2–3 years.

Drug	Comparator	Study design elements	1° Endpoint
Edoxaban ^{1,2}	Dalteparin	Outcomes measured after both 6 months and 12 months of therapy	Composite of recurrent VTE and major bleeding
Rivaroxaban ³	Dalteparin	After randomization of active therapy for 6 months, patients are randomized to <u>rivaroxaban vs.</u> placebo for a further 6 months	Recurrent VTE
Rivaroxaban ⁴	Any LMWH	Randomized for 3 months	Patient-reported treatment satisfaction
Apixaban ⁵	Dalteparin	Randomized for 6 months	<u>Safety</u>

^{1.} Clinical.trials.gov NCT02073682; 2. van Es N et al. Thromb Haemost 2015; 3. IRCTN Registry ISRCTN86712308; 4. Clinicaltrials.gov NCT02583191; 5. Clinicaltrials.gov NCT02585713

Decision making

- Patients place great reliance on their doctors advice regarding treatment of CAT.¹
- Discussing options with patients should include:
 - Strength of evidence
 - o Potential benefits
 - o Potential complications

So is there any role for DOACs in cancer now?

Efficacy of LMWH most marked in first 3 months

The CLOT Trial Primary outcome: VTE recurrence

HR = hazard ratio; NNT = number needed to treat; VKA = vitamin K antagonist; VTE = venous thromboembolism

So is there any role for DOACs in cancer now?

- Efficacy of LMWH most marked in first 3 months
- No studies have demonstrated superiority after 6 months
- Arguably, one can justify any of the anticoagulants

My practice

- At six months (if patient warrants indefinite anticoagulation)
- DOAC if
 - Patient wants to stop injections
 - o Not receiving chemo
 - Renal function satisfactory

When the evidence is lacking:

- Management should be guided by an appreciation of
 - Pathophysiology of CAT
 - Thrombogenicity of respective cancer
 - Thrombogenicity of respective chemotherapy
 - Bleeding risks
 - o Patient views

